Thoughts about Person Reidentification and Beyond

Liang Zheng Australian National University 8-Jan-2019

Collaborators

Xiaoxiao Sun ANU

Yue Yao ANU

Yunzhong Hou ANU

Tom Gedeon ANU

Xiaodong Yang NVIDIA

Milind Naphade NVIDIA

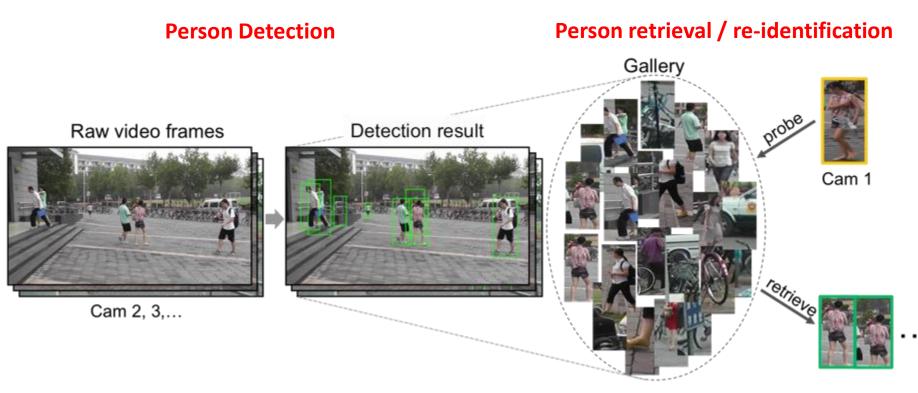
Zhongdao Wang THU

Shengjin Wang THU

Outline

- Introduction
- Re-id vs multi-object tracking
- Data synthesis in object re-id
- Alice benchmark suite

Introduction



Person retrieval / re-identification

query

retrieved images

Outline

- Introduction
- Re-id vs multi-object tracking
- Data synthesis in object re-id
- Alice benchmark suite

Online Multi-Object Tracking (MOT)

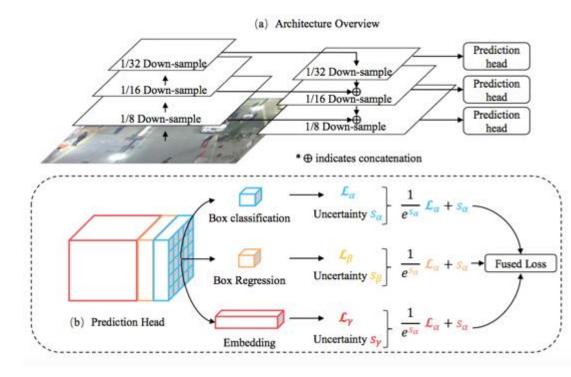
- 1. Key Components in MOT:
 - Object Detection
 - Appearance feature model _
 - Motion model
 - Association algorithm
- 2. Challenges in practical applications
 - Occlusions
 - A real-time system !
- 3. Our solution
 - Incorporating the detector and the appearance feature model into a shared, one-stage network.

Bottlenecks of the system for being real-time

Zhongdao Wang, Liang Zheng, Yixuan Liu, Shengjin Wang, Towards real-time multi-object tracking. Arxiv 2019.

JDE: Joint Detection and appearance Embedding

- 1. Utilizing available training data (For multi-pedestrian tracking):
 - a) Pedestrian detection datasets with box annotations.
 - b) MOT/Person search datasets with box+identity annotations.
- 2. Architecture: FPN + Multi-task prediction head
- 3. Appearance embedding head: Classification with cross entropy loss
- 4. Loss fusion: Automatic loss balancing via modeling task-specific uncertainty



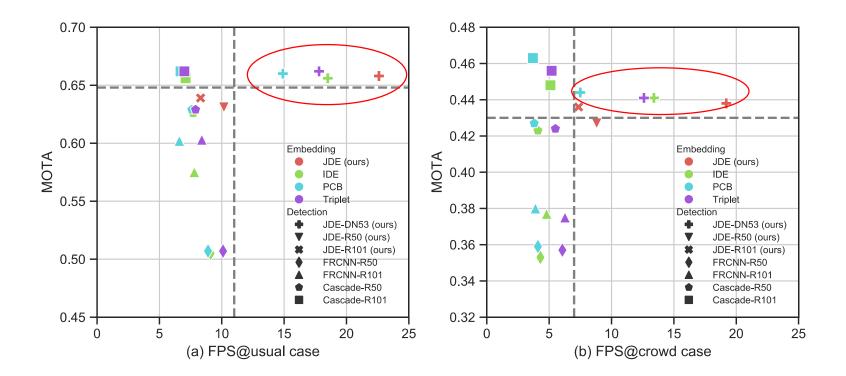
Zhongdao Wang, Liang Zheng, Yixuan Liu, Shengjin Wang, Towards real-time multi-object tracking. Arxiv 2019.

(Caltech, CityPersons, ETH)

(MOT16, PRW, CUHK-SYSU)

Good speed-accuracy trade-off

Joint training is mainly for speed consideration; accuracy might not be optimal.



Zhongdao Wang, Liang Zheng, Yixuan Liu, Shengjin Wang, Towards real-time multi-object tracking. Arxiv 2019.

- Good speed-accuracy trade-off
- Near real-time
- Competitive accuracy on MOT-16 (MOTA)

Method	Det	Emb	#box	#id	MOTA	IDF1	MT	ML	IDs	FPSD	FPSA	FPS
DeepSORT_2	FRCNN	WRN	429K	1.2k	61.4	62.2	32.8	18.2	<u>781</u>	<15*	17.4	<8.1
RAR16wVGG	FRCNN	Inception	429K	-	63.0	63.8	<u>39.9</u>	22.1	482	<15*	1.6	<1.5
TAP	FRCNN	MRCNN	429K	-	64.8	73.5	40.6	22.0	794	<15*	18.2	<8.2
CNNMTT	FRCNN	5-Layer	429K	0.2K	<u>65.2</u>	62.2	32.4	21.3	946	<15*	11.2	<6.4
POI	FRCNN	QAN	429K	1 6K	66.1	<u>65.1</u>	34.0	21.3	805	<15*	9.9	<6
JDE-864(ours)	JDE	-	270K	8.7K	62.1	56.9	34.4	16.7	1,608	34.3	<u>81.0</u>	24.1
JDE-1088(ours)	JDE	-	270K	8.7K	64.4	55.8	35.4	20.0	1,544	<u>24.5</u>	81.5	<u>18.8</u>

Multi-Target Multi-Camera Tracking

• Multi-Target Multi-Camera Tracking focuses on determine who is where at all times.

- Similarity estimation is a key component in MTMCT.
 - Re-ID features are often adopted for similarity estimation.

Difference between tracking and re-ID

- Local vs. global difference between tracking and re-ID.
 - Re-ID systems (top row) usually search globally.

query

person re-identification

Re-ID features are highly robust to variances.

Difference between tracking and re-ID

- Local vs. global difference between tracking and re-ID.
 - Re-ID systems (top row) usually search globally.
 - Tracking systems usually search within local neighbors (neighboring frames/cameras).

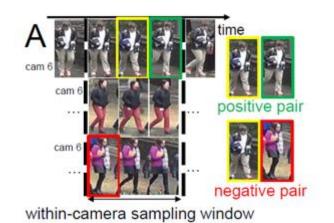
multi-camera tracking

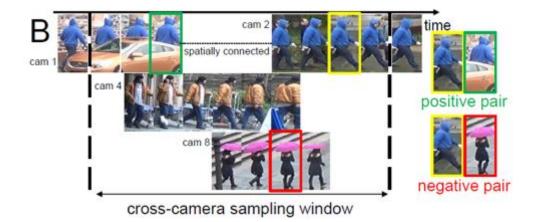
Tracking features do not have to be that robust.

Directly using re-ID features leads to false positive matches.

Local metric for local matching

- Our idea: Local metric for local matching.
- A local metric for single camera tracking.
- A local metric for multi camera tracking.
- Select data pairs with temporal windows over single/multi camera.





Training data are locally sampled!

• Tracking accuracy increases on multiple datasets.

Variant	CityFlow test set MCT results				
	IDF1	IDP	IDR		

CityFlow dataset (vehicle tracking)

• Tracking accuracy increases on multiple datasets.

Variant	CityFlow test set MCT results			
vallalli	IDF1	IDP	IDR	
Baseline	56.6	53.3	60.7	

CityFlow dataset (vehicle tracking)

• Tracking accuracy increases on multiple datasets.

Variant	CityFlow test set MCT results			
varialli	IDF1	IDP	IDR	
Baseline	56.6	53.3	60.7	
Global metric	57.1	54.4	60.7	

CityFlow dataset (vehicle tracking)

• Tracking accuracy increases on multiple datasets.

Variant	CityFlow test set MCT results			
vallalli	IDF1	IDP	IDR	
Baseline	56.6	53.3	60.7	
Global metric	57.1	54.4	60.7	
LAAM (intra/inter)	63.0	60.7	66.0	

CityFlow dataset (vehicle tracking)

• Tracking accuracy increases on multiple datasets.

	Validation set IDF1 results					
Variant	IDE		triplet		PCB	
	SCT	MCT	SCT	MCT	SCT	MCT
Baseline	86.4	81.4	86.2	80.9	85.8	80.6
Global metric	85.9	81.6	84.1	79.7	87.4	81.6
LAAM (intra/inter)	87.9	83.8	87.9	84.5	87.7	82.9

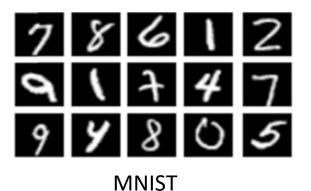
DukeMTMC dataset (pedestrian tracking)

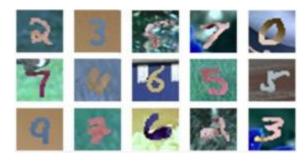
Outline

- Introduction
- Re-id vs multi-object tracking
- Data synthesis in object re-id
- Alice benchmark suite

Problem

- Domain shift
 - image classification





MNIST-M

• Crowd counting

ShanghaiTech

Existing domain adaptation methods

• Style level

Source image (GTA5)

Adapted source image (Ours)

Target image (CityScapes)

Hoffman et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." ICML, 2017.

Our idea

	Training set	Testing set	model
Neural architecture search	fixed	fixed	To be searched
Content-level domain adaptation	To be searched	fixed	fixed

Content-level domain adaptation

idea

source

How to remedy domain gap? Style/feature alignment Content alignment target

Content-level domain adaptation

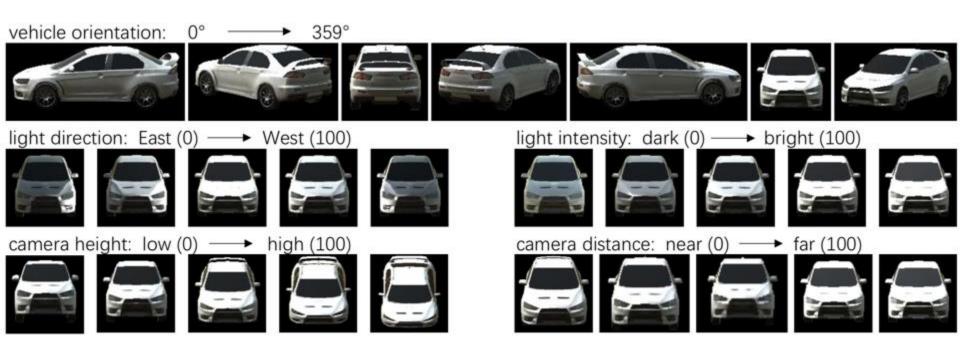
idea

How to remedy domain gap? Style/feature alignment Content alignment

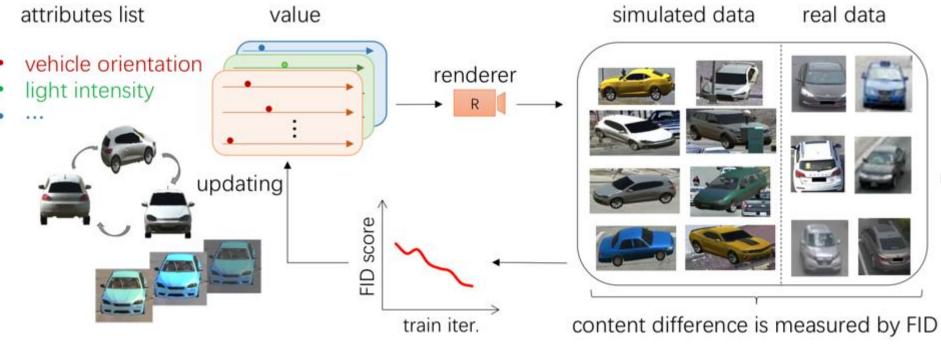
Content-level domain adaptation

- We collected the VehicleX Dataset
 - controllability and editability
 - 1,209 vehicles
 - ~350 types of vehicles
 - Platform: Unity
 - Editable attributes: lighting direction, lighting intensity, vehicle orientation, camera height, camera distance

Editable Attributes

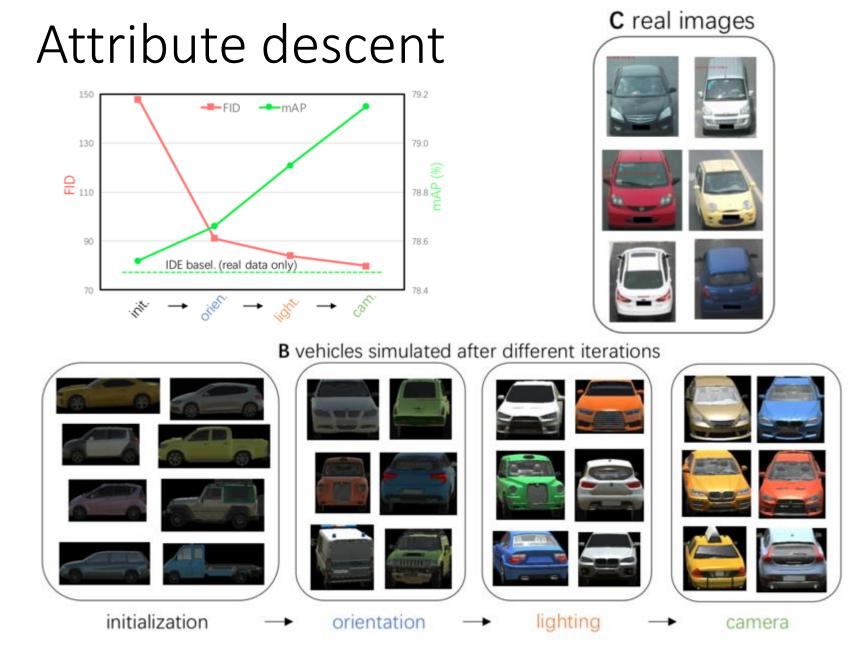


Overall method



simulated data w/ learned attributes

Attribute modeling: Gaussian mixture models **Distribution difference measure**: Fré chet Inception Distance (FID)



We optimize the value of each attributes successively

For a given attribute, we search (brute-force) for its optimum value such that FID is minimized

• Method comparison on the CityFlow dataset

	Method	Data	Rank-1	Rank-20	mAP
--	--------	------	--------	---------	-----

We use rank-1, rank-20 and mAP as evaluation metrics

• Method comparison on the CityFlow dataset

Method	Data	Rank-1	Rank-20	mAP
BA [18]	R	49.62	80.04	25.61

Existing methods

• Method comparison on the CityFlow dataset

Method	Data	Rank-1	Rank-20	mAP
BA [18]	R	49.62	80.04	25.61
BS [18]	R	49.05	78.80	25.57
PAMTRI [32]	R+S	59.7	80.13	33.81

Existing methods

• Method comparison on the CityFlow dataset

Method	Data	Rank-1	Rank-20	mAP
BA [18]	R	49.62	80.04	25.61
BS [18]	R	49.05	78.80	25.57
PAMTRI [32]	R+S	59.7	80.13	33.81
IDE(CE+Tri.)	R	56.75	72.24	30.21

Our baseline

• Method comparison on the CityFlow dataset

Method	Data	Rank-1	Rank-20	mAP
BA [18]	R	49.62	80.04	25.61
BS [18]	R	49.05	78.80	25.57
PAMTRI [32]	R+S	59.7	80.13	33.81
IDE(CE+Tri.)	R	56.75	72.24	30.21
Random Attr.	R+S	54.09	78.04	32.03

We simulate data with random attributes.

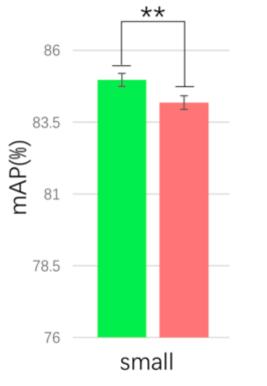
Method comparison on the CityFlow dataset

Method	Data	Rank-1	Rank-20	mAP
BA [18]	R	49.62	80.04	25.61
BS [18]	R	49.05	78.80	25.57
PAMTRI [32]	R+S	59.7	80.13	33.81
IDE(CE+Tri.)	R	56.75	72.24	30.21
Random Attr.	R+S	54.09	78.04	32.03
Learned Attr.	R+S	59.32	80.42	34.63

We simulate data with learned attributes.

Experiment – statistical significance

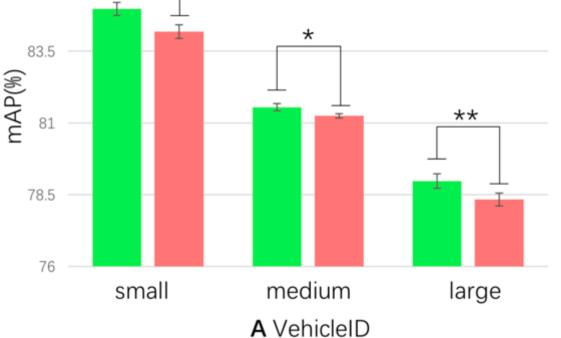
- Learned attribute vs. random attribute
 - Learned Attr. Random Attr.



A VehicleID

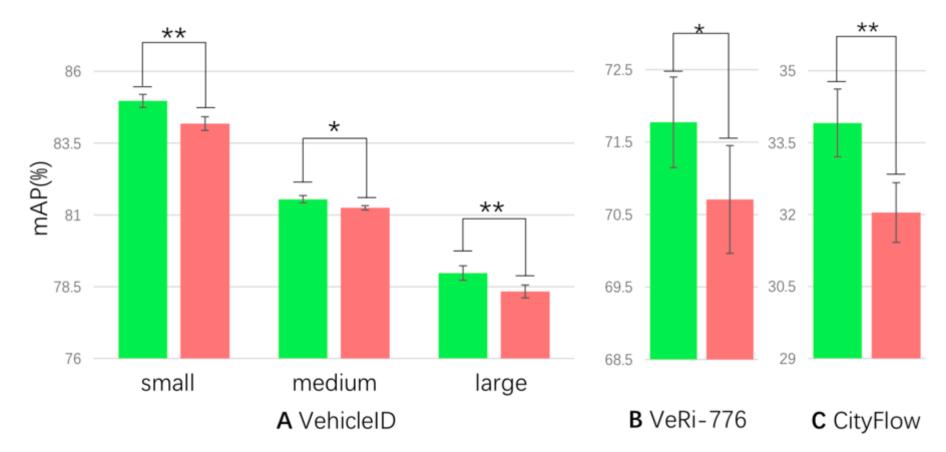
Experiment – statistical significance

- Learned attribute vs. random attribute
- Learned Attr.
 Random Attr.
 86
 86
 83.5



Experiment – statistical significance

- Learned attribute vs. random attribute
- Learned Attr. Random Attr.



Outline

- Introduction
- Re-id vs multi-object tracking
- Data synthesis in object re-id
- Alice benchmark suite

Alice benchmark suite

Welcome to the Alice Synthetic 3D World

The Alice project is an online evaluation server of domain adaptation tasks in computer vision. In each task, the source domain consists of synthetic data, and the target domain can be either synthetic or real-world. A distinct feature of Alice is that the source domain is editable. We use 3D graphics engines like Unity to simulate the source data, such that the imagery can be precisely controlled through our APIs. In other words, the objective of Alice is to find a source training set to improve the recognition performance on a given target testing set.

News

- 23.12.2019: The very first task of Alice is online! It is a traditional task domain adaptive pedestrian recognition. We use PersonX as the source domain and Market-1501 (unreleased labels) as the target domain. We are accepting leaderboard submissions!
- 06.12.2019: The Alice websit is online.

http://alice-challenge.site/

Alice benchmark suite

• Alice v0 is online, now accepting submissions

Xiaoxiao Sun, Liang Zheng, Dissecting person re-identification from the viewpoint of viewpoint. CVPR 2019.

- Task: style/feature domain adaptation
- Source: synthetic persons (PersonX, CVPR 2019)
- Target: real persons (AlicePerson, unreleased data from the Market-1501 data source)

Leader Board

TeamName	Rank-1	Rank-5	Rank-10	mAP	Rank
SPGAN (PCB)	0.28971	0.45277	0.538259	0.100823	1
Direct Transfer (PCB)	0.210554	0.347757	0.427441	0.078306	2
Direct Transfer (IDE)	0.170976	0.308179	0.38628	0.065966	3

Alice benchmark suite

• Future: content-level domain adaptation

Conclusion

- Re-id vs tracking
 - Feature sharing for efficiency considerations
 - Global (re-id) vs local (tracking)
- Content-level domain adaptation
 - Orthogonal to existing DA methods
 - Editable source domain
- Alice benchmark suite content-level domain adaptation

Q & A

Thanks!